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Abstract; Let  G = (V, E)  be a graph with p vertices and q edges . G is said to be Stolarsky-3 Mean graph  if 

each vertex x∈V is assigned distinct labels f(x) from 1,2,….,q+1 and each edge e=uv is assigned the distinct 

labels f(e=uv) = ��
�(�)���(�)�(�) ��(�)�

�
�  (or) ��

�(�)�� �(�)�(�)��(�)�

�
� then the resulting edge labels are distinct. 

In this case f is called a Stolarsky-3 Mean labeling of G and G is called a Stolarsky-3 Mean graph. In this paper 

we prove that Path��, Cycle �� , Comb�����, Ladder �� ,Star ��,�, Triangular Snake �� , Quadrilateral 

Snake �� are Stolarsky -3 Mean graphs. 
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1. Introduction 
 

 The graph G = (V,E)  considered here will be finite, simple and undirected. We follow Gallian[1] for all 

detailed survey of graph labeling and we refer Harary[2] for all other standard terminologies and notations.  

S.Somasundaram and R.Ponraj introduced the concept of “Mean Labeling of Graphs” in 2004[3] and 

S.Somasundaram and S.S. Sandhya introduced the concept of “Harmonic Mean Labeling of graphs “in[4].  

S.S. Sandhya, E.Ebin Raja Merely and S.Kavitha introduce a new type of Labeling called “Stolarsky-3 Mean  

 

Labeling of Graphs” 

 We will give the following definitions and other information’s which are helpful for our present 

investigation. 

Definition 1.1:  A walk in which all the vertices ��, ��, … , �� are distinct is called a path. It is denoted by ��. 

Definition 1.2: A closed path is called a cycle. A cycle on n vertices is denoted by ��. 

Definition 1.3: The graph obtained by adding a single pendant edge to each vertex of a path of n vertices is 

called a comb.  It is denoted by �����. 

Definition 1.4: The Cartesian product of two graphs ��=(��, ��) and  �� =(��, ��)  is a graph      G = (V, E) 

with V=�� × �� and two vertices u=(��, ��) and v=(��, ��) are adjacent in �� × �� whenever (�� = �� and �� 

is adjacent to ��) or (�� = �� and �� is adjacent to ��). It is denoted by �� × ��. 

Definition 1.5:  The Ladder graph �� (n≥ 2) is the product graph �� × �� which contains 2n vertices and 3n-2 

edges. 
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Definition 1.6: A Triangular Snake �� is obtained from a path ��, ��, … , �� by joining �� and ���� to a new 

vertex �� for 1≤ � ≤n-1. That is, every edge of a path is replaced by a triangle��. 

Definition 1.7: A Quadrilateral snake �� is obtained from a path  ��, ��, … , �� by joining  �� and  ���� to two 

new vertices �� and �� respectively and then joining ��and��. That is, every edge of a path is replaced by a cycle 

��. 

Definition 1.8: A bigraph (or a bipartite graph) is a graph whose vertex set V can be partitioned into two 

subsets �� and�� such that every edge of G joins a vertex of ��to a vertex of ��. (��, ��) is called a bipartition of 

G. If further G contains every vertex of �� is joining to all the vertices of ��then G is called a complete bigraph. 

It is denoted by ��,� where |��| = �    and |��| =n. 

Definition 1.9: A star is a complete bipartite graph��,�. 

 

2. Main Results 
 

Theorem 2.1: Any Path �� is  a Stolarsky-3 Mean graph. 

Proof:  Let   ��, ��, … , �� be the vertices of  the Path  �� whose length is n. 

Define a function   f : V(��)→{ 1,2,…., q+1} by  

  f(��) = i, 1≤ � ≤ �. 

Then the edges are labeled as 

   f(������) = i ,1≤ � ≤ � − 1. 

Thus we get distinct edge labels. 

Hence Path �� is Stolarsky-3 Mean graph. 

Example 2.2:  The Stolarsky-3 Mean labeling of �� is given below. 

 
Figure: 1 

Theorem 2.3:  Any Cycle �� is a Stolarsky-3 Mean graph. 

Proof:  Let   ��, ��, … , �� ,�� be the cycle �� whose length is n. 

Define a function  f : V(��)→{ 1,2,…., q+1} by 

   f(��) =i , 1≤ � ≤ �. 

Then the edge labels are distinct. 

Hence Cycle  �� is Stolarsky-3 Mean graph. 

Example 2.4:  The Stolarsky-3 Mean labeling of �� is given below. 
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                  Figure: 2 

 

Theorem 2.5:  Comb (�����) is a Stolarsky-3 Mean graph. 

Proof:  Let  G be the Comb with vertices  ��, ��, … , �� and  ��, ��, … , ��. 

Let �� be the path  ��, ��, … , �� and join a vertex �� to �� , 1≤ � ≤ �. 

Define a function  f : V(�)→{ 1,2,…., q+1} by 

 f(��)  = 2i-1 , 1≤ � ≤ �. 

f(��)  = 2i , 1≤ � ≤ �. 

Then the edges are labeled as 

 f(������) =2 i , 1≤ � ≤ � − 1. 

f(������) =2 i -1, 1≤ � ≤ �. 

Thus we get distinct edge labels. 

Hence Comb (�����)  is a Stolarsky-3 Mean graph. 

Example 2.6:   Stolarsky-3 Mean Labeling of Comb obtained from �� is given below. 

 
                   Figure:3 

Theorem 2.7: The Ladder �� = �� × �� is a Stolarsky-3 Mean graph. 

Proof:  Let G be the Ladder graph with the vertices ��, ��, … , �� and  ��, ��, … , ��. 

Define a function  f : V(�)→{ 1,2,…., q+1} by 

 f(��)  = 3i-2 , 1≤ � ≤ �. 

f(��)  = 3i-1 , 1≤ � ≤ �. 

Then the edges are labeled as 

f(������) = 3i - 1 , 1≤ � ≤ � − 1. 

f(������) = 3i,  1≤ � ≤ � − 1. 
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f(����) = 3i  - 2, 1≤ � ≤ �. 

Thus we get distinct edge labels. 

Hence Ladder �� = �� × �� is a Stolarsky-3 Mean graph 

Example 2.8:  The Stolarsky-3 Mean  labeling of   �� is given below. 

 
Figure: 4 

Theorem 2.9:  Any Triangular Snake �� is a Stolarsky-3 Mean graph. 

Proof:  Let �� be the Triangular snake graph with the vertices  ��, ��, … , ��, ��, ��, … , ����. 

Consider a Path  ��, ��, … , ��.  Join �� ��� ���� to new vertex �� , 1≤ � ≤ � − 1 

Define a function  f : V(��)→{ 1,2,…., q+1} by 

 f(��)  = 3i-2 , 1≤ � ≤ �. 

f(��)  = 3i-1 , 1≤ � ≤ � − 1. 

Then the edges are labeled as 

 f(������) = 3i - 1 , 1≤ � ≤ � − 1. 

f(����) = 3i  - 2,  1≤ � ≤ � − 1. 

f(������) = 3i,  1≤ � ≤ � − 1. 

Thus we get distinct edge labels. 

Hence Triangular Snake graph  �� is a Stolarsky-3 Mean graph. 

Example 2.10:  The Stolarsky-3 Mean labeling of �� is given below. 

 
   Figure: 5 

Theorem 2.11:  Any Quadrilateral Snake �� is a Stolarsky-3 Mean graph. 

Proof:  Let �� be the Quadrilateral Snake with the vertices ��, ��, … , ��, 

��, ��, … , ���� ���   ��, ��, … , ����. Consider a Path  ��, ��, … , ��. Join �� ��� ����  

to  two new vertices �� , and �� 1≤ � ≤ � − 1. 

Define a function  f : V(��)→{ 1,2,…., q+1} by 

 f(��)  = 4i-3 , 1≤ � ≤ �. 

f(��)  = 4i-2 , 1≤ � ≤ � − 1. 

f(��)  = 4i-1 , 1≤ � ≤ � − 1. 

Then the edges are labeled as 

 f(������) = 4i - 1 , 1≤ � ≤ � − 1. 
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f(����) = 4i  - 3,  1≤ � ≤ � − 1. 

f(������) = 4i,  1≤ � ≤ � − 1. 

Thus we get distinct edge labels. 

Hence Quadrilateral Snake ��is a Stolarsky-3 Mean graph. 

Example 2.12:  Stolarsky-3 Mean labeling of �� is given below. 

 
Figure:6 

Theorem 2.13:  ��,� is a Stolarsky-3 Mean graph if n ≤ 15.  

Proof:   ��,�, ��,� are Stolarsky-3 Mean graphs. 

Let the central vertex of the star be u. The other vertices are ��, ��, … , �� respectively. Now we consider the 

following cases. 

Case (i) 2< � ≤ �.  Assign u = 1, �� = 2  and �� = 2� − 1 , 2≤ � ≤ 8.  

Then the labeling pattern is given below       

 

                                                                                  ��,� 

 
                               ��,�     

 
��,� 
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Figure:7 

Case (ii)  9≤ � ≤ ��. Assign u = 1, �� = 2, �� = 3,  �� = 4    and �� = 2� − 3 , 4≤ � ≤ 15. Then the 

labeling pattern is given below. 

     

        ��,�      

                    
 

 

��,�� 
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Figure:8 

Clearly this labeling pattern is Stolarsky-3 Mean graph. 

Case (iii)  n>15 

Let the label of the vertices u =1 ,�� = 2, �� = 3, �� = 4, �� = 2� − 3, 4≤ � ≤ � 

                                                   

                                                                  ��,�  

 
                                                                    Figure:9 
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Here the edge labels of u��� is 15 and u��� is 17. The number 16 missing which is not possible. From case (i), 

case(ii) and case(iii) ,we conclude that   ��,� is a Stolarsky-3 Mean graph   if n ≤ 15. 

 

3. Conclusion 
 

 In this paper we introduced the concept of Stolarsky-3 Mean labeling and studied the stolarsky-3 Mean 

labeling behavior of some standard graphs. The authors are of the opinion that the study of Stolarsky-3 Mean 

labeling behavior of graph obtained from standard graphs using the graph operation shall be quite interesting 

and also will lead to new results. 
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