Stolarsky-3 Mean Labeling of Graphs

${ }^{1}$ S.Kavitha, ${ }^{2}$ S.S.Sandhya, and ${ }^{3}$ E.Ebin Raja Merly
${ }^{1}$.Research scholar, Nesamony Memorial Christian college, Marthandam. (Affiliated to Manonmaniam sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India)
${ }^{2}$.Assistant Professor, Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai- 629003, Tamilnadu, India, Email:sssandhya2009@gmail.com 3. Assistant Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, Tamilnadu, India, E-mail:ebinmerly@gmail.com.

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. G is said to be Stolarsky-3 Mean graph if each vertex $\mathrm{x} \in \mathrm{V}$ is assigned distinct labels $\mathrm{f}(\mathrm{x})$ from $1,2, \ldots, \mathrm{q}+1$ and each edge $\mathrm{e}=\mathrm{uv}$ is assigned the distinct labels $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ (or) $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G and G is called a Stolarsky-3 Mean graph. In this paper we prove that $\operatorname{Path} P_{n}, \operatorname{Cycle} C_{n}, \operatorname{Comb} P_{n} \boldsymbol{\theta} k_{1}$, Ladder $L_{n}, S t a r ~ K_{1, n}$, Triangular Snake T_{n}, Quadrilateral Snake Q_{n} are Stolarsky -3 Mean graphs.

Keywords: Graph Labeling, Mean Labeling, Stolarsky-3 Mean Labeling

1. Introduction

The graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ considered here will be finite, simple and undirected. We follow Gallian[1] for all detailed survey of graph labeling and we refer Harary[2] for all other standard terminologies and notations. S.Somasundaram and R.Ponraj introduced the concept of "Mean Labeling of Graphs" in 2004[3] and S.Somasundaram and S.S. Sandhya introduced the concept of "Harmonic Mean Labeling of graphs "in[4]. S.S. Sandhya, E.Ebin Raja Merely and S.Kavitha introduce a new type of Labeling called "Stolarsky-3 Mean

Labeling of Graphs"

We will give the following definitions and other information's which are helpful for our present investigation.
Definition 1.1: A walk in which all the vertices $u_{1}, u_{2}, \ldots, u_{n}$ are distinct is called a path. It is denoted by P_{n}.
Definition 1.2: A closed path is called a cycle. A cycle on n vertices is denoted by C_{n}.
Definition 1.3: The graph obtained by adding a single pendant edge to each vertex of a path of n vertices is called a comb. It is denoted by $P_{n} \boldsymbol{\Theta} K_{1}$.
Definition 1.4: The Cartesian product of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=(\mathrm{V}, \mathrm{E})$ with $\mathrm{V}=V_{1} \times V_{2}$ and two vertices $\mathrm{u}=\left(u_{1}, u_{2}\right)$ and $\mathrm{v}=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever $\left(u_{1}=v_{1}\right.$ and u_{2} is adjacent to v_{2}) or ($u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}). It is denoted by $G_{1} \times G_{2}$.
Definition 1.5: The Ladder graph $L_{n}(\mathrm{n} \geq 2)$ is the product graph $P_{2} \times P_{n}$ which contains 2 n vertices and $3 \mathrm{n}-2$ edges.

Definition 1.6: A Triangular Snake T_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq \mathrm{n}-1$. That is, every edge of a path is replaced by a triangle C_{3}.
Definition 1.7: A Quadrilateral snake Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to two new vertices v_{i} and w_{i} respectively and then joining v_{i} and w_{i}. That is, every edge of a path is replaced by a cycle C_{4}.
Definition 1.8: A bigraph (or a bipartite graph) is a graph whose vertex set V can be partitioned into two subsets $V_{1} \operatorname{and} V_{2}$ such that every edge of G joins a vertex of V_{1} to a vertex of $V_{2} .\left(V_{1}, V_{2}\right)$ is called a bipartition of G. If further G contains every vertex of V_{1} is joining to all the vertices of V_{2} then G is called a complete bigraph. It is denoted by $K_{m, n}$ where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=\mathrm{n}$.
Definition 1.9: A star is a complete bipartite graph $K_{1, n}$.

2. Main Results

Theorem 2.1: Any Path P_{n} is a Stolarsky-3 Mean graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the Path P_{n} whose length is n .
Define a function $\mathbf{f}: \mathrm{V}\left(P_{n}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\mathbf{f}\left(u_{i}\right)=\mathrm{i}, 1 \leq i \leq n .
$$

Then the edges are labeled as

$$
\mathbf{f}\left(u_{i} u_{i+1}\right)=\mathrm{i}, 1 \leq i \leq n-1 .
$$

Thus we get distinct edge labels.
Hence Path P_{n} is Stolarsky-3 Mean graph.
Example 2.2: The Stolarsky-3 Mean labeling of P_{7} is given below.

Figure: 1
Theorem 2.3: Any Cycle C_{n} is a Stolarsky-3 Mean graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ be the cycle C_{n} whose length is n .
Define a function $\mathbf{f}: \mathrm{V}\left(C_{n}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\mathbf{f}\left(u_{i}\right)=\mathrm{i}, 1 \leq i \leq n .
$$

Then the edge labels are distinct.
Hence Cycle C_{n} is Stolarsky-3 Mean graph.
Example 2.4: The Stolarsky-3 Mean labeling of C_{8} is given below.

Figure: 2
Theorem 2.5: Comb $\left(P_{n} \boldsymbol{\Theta} K_{1}\right)$ is a Stolarsky-3 Mean graph.
Proof: Let G be the Comb with vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$.
Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$ and join a vertex u_{i} to $v_{i}, 1 \leq i \leq n$.
Define a function $\mathrm{f}: \mathrm{V}(G) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\begin{gathered}
\mathbf{f}\left(u_{i}\right)=2 \mathrm{i}-1,1 \leq i \leq n . \\
\mathbf{f}\left(v_{i}\right)=2 \mathrm{i}, 1 \leq i \leq n .
\end{gathered}
$$

Then the edges are labeled as

$$
\begin{gathered}
\mathrm{f}\left(u_{i} u_{i+1}\right)=2 \text { i }, 1 \leq i \leq n-1 . \\
\mathrm{f}\left(u_{i} u_{i+1}\right)=2 \text { i }-1,1 \leq i \leq n .
\end{gathered}
$$

Thus we get distinct edge labels.
Hence Comb ($P_{n} \boldsymbol{\Theta} K_{1}$) is a Stolarsky-3 Mean graph.
Example 2.6: Stolarsky-3 Mean Labeling of Comb obtained from P_{5} is given below.

Figure:3
Theorem 2.7: The Ladder $L_{n}=P_{2} \times P_{n}$ is a Stolarsky-3 Mean graph.
Proof: Let G be the Ladder graph with the vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$.
Define a function $\mathbf{f}: \mathrm{V}(G) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\begin{array}{r}
\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n . \\
\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}-1,1 \leq i \leq n .
\end{array}
$$

Then the edges are labeled as

$$
\begin{aligned}
& \mathrm{f}\left(u_{i} u_{i+1}\right)=3 \mathrm{i}-1,1 \leq i \leq n-1 . \\
& \mathrm{f}\left(v_{i} v_{i+1}\right)=3 \mathrm{i}, 1 \leq i \leq n-1 .
\end{aligned}
$$

$$
\mathbf{f}\left(u_{i} v_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n
$$

Thus we get distinct edge labels.
Hence Ladder $L_{n}=P_{2} \times P_{n}$ is a Stolarsky-3 Mean graph
Example 2.8: The Stolarsky-3 Mean labeling of $\boldsymbol{L}_{\mathbf{5}}$ is given below.

Figure: 4
Theorem 2.9: Any Triangular Snake T_{n} is a Stolarsky-3 Mean graph.
Proof: Let T_{n} be the Triangular snake graph with the vertices $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n-1}$.
Consider a Path $u_{1}, u_{2}, \ldots, u_{n}$. Join u_{i} and u_{i+1} to new vertex $v_{i}, 1 \leq i \leq n-1$
Define a function $\mathbf{f}: \mathrm{V}\left(T_{n}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\begin{gathered}
\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n \\
\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}-1,1 \leq i \leq n-1
\end{gathered}
$$

Then the edges are labeled as

$$
\begin{aligned}
& \mathbf{f}\left(u_{i} u_{i+1}\right)=3 \mathrm{i}-1,1 \leq i \leq n-1 . \\
& \mathbf{f}\left(u_{i} v_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n-1 . \\
& \mathrm{f}\left(v_{i} u_{i+1}\right)=3 \mathrm{i}, 1 \leq i \leq n-1 .
\end{aligned}
$$

Thus we get distinct edge labels.
Hence Triangular Snake graph T_{n} is a Stolarsky-3 Mean graph.
Example 2.10: The Stolarsky-3 Mean labeling of T_{6} is given below.

Figure: 5
Theorem 2.11: Any Quadrilateral Snake Q_{n} is a Stolarsky-3 Mean graph.
Proof: Let Q_{n} be the Quadrilateral Snake with the vertices $u_{1}, u_{2}, \ldots, u_{n}$,
$v_{1}, v_{2}, \ldots, v_{n-1}$ and $w_{1}, w_{2}, \ldots, w_{n-1}$. Consider a Path $u_{1}, u_{2}, \ldots, u_{n}$. Join u_{i} and u_{i+1}
to two new vertices v_{i}, and $w_{i} 1 \leq i \leq n-1$.
Define a function $\mathbf{f}: \mathrm{V}\left(Q_{n}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\begin{aligned}
& \mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n \\
& \mathbf{f}\left(v_{i}\right)=4 \mathrm{i}-2,1 \leq i \leq n-1 \\
& \mathbf{f}\left(w_{i}\right)=4 \mathrm{i}-1,1 \leq i \leq n-1
\end{aligned}
$$

Then the edges are labeled as

$$
\mathbf{f}\left(u_{i} u_{i+1}\right)=4 \mathrm{i}-1,1 \leq i \leq n-1
$$

$$
\begin{aligned}
& \mathbf{f}\left(u_{i} v_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n-1 \\
& \mathbf{f}\left(v_{i} u_{i+1}\right)=4 \mathrm{i}, 1 \leq i \leq n-1
\end{aligned}
$$

Thus we get distinct edge labels.
Hence Quadrilateral Snake Q_{n} is a Stolarsky-3 Mean graph.
Example 2.12: Stolarsky-3 Mean labeling of Q_{5} is given below.

Figure:6
Theorem 2.13: $K_{1, n}$ is a Stolarsky-3 Mean graph if $\mathrm{n} \leq 15$.
Proof: $K_{1,1}, K_{1,2}$ are Stolarsky- 3 Mean graphs.
Let the central vertex of the star be u. The other vertices are $v_{1}, v_{2}, \ldots, v_{n}$ respectively. Now we consider the following cases.
Case (i) $2<\boldsymbol{n} \leq 8$. Assign $u=1, v_{1}=2$ and $v_{i}=2 i-1,2 \leq i \leq 8$.
Then the labeling pattern is given below

Figure:7
Case (ii) $9 \leq \boldsymbol{n} \leq \mathbf{1 5}$. Assign $\mathrm{u}=1, v_{1}=2, v_{2}=3, v_{3}=4$ and $v_{i}=2 i-3,4 \leq i \leq 15$. Then the labeling pattern is given below.

$\mathrm{K}_{\mathbf{1 , 1 1}}$

Figure: 8
Clearly this labeling pattern is Stolarsky-3 Mean graph.
Case (iii) $\mathrm{n}>15$
Let the label of the vertices $\mathrm{u}=1, v_{1}=2, v_{2}=3, v_{3}=4, v_{i}=2 i-3,4 \leq i \leq n$

Figure:9

Here the edge labels of $\mathrm{u} v_{15}$ is 15 and $\mathrm{u} v_{16}$ is 17 . The number 16 missing which is not possible. From case (i), case(ii) and case(iii), we conclude that $K_{1, n}$ is a Stolarsky-3 Mean graph if $\mathrm{n} \leq 15$.

3. Conclusion

In this paper we introduced the concept of Stolarsky-3 Mean labeling and studied the stolarsky-3 Mean labeling behavior of some standard graphs. The authors are of the opinion that the study of Stolarsky-3 Mean labeling behavior of graph obtained from standard graphs using the graph operation shall be quite interesting and also will lead to new results.

4. Acknowledgements

The authors are thankful to the referee for their valuable comments and suggestions.

REFERENCES

[1] J.A. Gallian, "A dynamic survey of graph labeling", The electronic Journal of Combinatories 17(2017),\#DS6.
[2] F.Harary, 1988, "Graph Theory" Narosa Puplishing House Reading , New Delbi.
[3] S.Somasundram, and R.Ponraj 2003 "Mean Labeling of Graphs", National Academy of Science Letters Vol. 26, p.210213.
[4] S.Somasundram, R.Ponraj and S.S.Sandhya, "Harmonic Mean Labeling of Graphs" communicated to Journal of Combinatorial Mathematics and combinational computing.

